Intelligent Scheduling with Machine Learning Capabilities: The Induction of Scheduling Knowledges
نویسندگان
چکیده
Dynamic scheduling of manufacturing systems has primarily involved the use of dispatching rules. In the context of conventional job shops, the relative performance of these rules has been found to depend upon the system attributes, and no single rule is dominant across all possible scenarios. This indicates the need for developing a scheduling approach which adopts a state-dependent dispatching rule selection policy. The importance of adapting the dispatching rule employed to the current state of the system is even more critical in a flexible manufacturing system because of alternative machine routing possibilities and the need for increased coordination among various machines. This study develops a framework for incorporating mxhine learning capabilities in intelligent scheduling. A patterndirected method, with a built-in inductive learning module, is developed for heuristic acquisition and refinement. This method enables the scheduler to classify distinct manufacturing patterns and to generate a decision tree consisting of heuristic policies for dynamically selecting the dispatching rule appropriate €or a given set of system attributes. ComputationaI experience indicates that the learning-augmented approach leads to improved system performance. In addition, the process of generating the decision tree shows the efficacy of inductive learning in extracting and ranking the various system attributes relevant for deciding upon the appropriate dispatching rule to employ. -
منابع مشابه
Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملSINGLE MACHINE DUE DATE ASSIGNMENT SCHEDULING PROBLEM WITH PRECEDENCE CONSTRAINTS AND CONTROLLABLE PROCESSING TIMES IN FUZZY ENVIRONMENT
In this paper, a due date assignment scheduling problem with precedence constraints and controllable processing times in uncertain environment is investigated, in which the basic processing time of each job is assumed to be the symmetric trapezoidal fuzzy number, and the linear resource consumption function is used.The objective is to minimize the crisp possibilistic mean (or expected) value of...
متن کاملFuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects
In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...
متن کاملTwo meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning
This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...
متن کامل